A novel computer-aided lung nodule detection system for CT images.

نویسندگان

  • Maxine Tan
  • Rudi Deklerck
  • Bart Jansen
  • Michel Bister
  • Jan Cornelis
چکیده

PURPOSE The paper presents a complete computer-aided detection (CAD) system for the detection of lung nodules in computed tomography images. A new mixed feature selection and classification methodology is applied for the first time on a difficult medical image analysis problem. METHODS The CAD system was trained and tested on images from the publicly available Lung Image Database Consortium (LIDC) on the National Cancer Institute website. The detection stage of the system consists of a nodule segmentation method based on nodule and vessel enhancement filters and a computed divergence feature to locate the centers of the nodule clusters. In the subsequent classification stage, invariant features, defined on a gauge coordinates system, are used to differentiate between real nodules and some forms of blood vessels that are easily generating false positive detections. The performance of the novel feature-selective classifier based on genetic algorithms and artificial neural networks (ANNs) is compared with that of two other established classifiers, namely, support vector machines (SVMs) and fixed-topology neural networks. A set of 235 randomly selected cases from the LIDC database was used to train the CAD system. The system has been tested on 125 independent cases from the LIDC database. RESULTS The overall performance of the fixed-topology ANN classifier slightly exceeds that of the other classifiers, provided the number of internal ANN nodes is chosen well. Making educated guesses about the number of internal ANN nodes is not needed in the new feature-selective classifier, and therefore this classifier remains interesting due to its flexibility and adaptability to the complexity of the classification problem to be solved. Our fixed-topology ANN classifier with 11 hidden nodes reaches a detection sensitivity of 87.5% with an average of four false positives per scan, for nodules with diameter greater than or equal to 3 mm. Analysis of the false positive items reveals that a considerable proportion (18%) of them are smaller nodules, less than 3 mm in diameter. CONCLUSIONS A complete CAD system incorporating novel features is presented, and its performance with three separate classifiers is compared and analyzed. The overall performance of our CAD system equipped with any of the three classifiers is well with respect to other methods described in literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients

Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...

متن کامل

طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندول‌های ریوی در تصاویر سی‌تی ‌اسکن

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

Detection and Attention: Diagnosing Pulmonary Lung Cancer from CT by Imitating Physicians

This paper proposes a novel and efficient method to build a Computer-Aided Diagnoses (CAD) system for lung nodule detection based on Computed Tomography (CT). This task was treated as an Object Detection on Video (VID) problem by imitating how a radiologist reads CT scans. A lung nodule detector was trained to automatically learn nodule features from still images to detect lung nodule candidate...

متن کامل

A Hierarchical Decision Engine for Computer Aided Lung Nodule Detection from CT Images

We present a novel hierarchical modular decision engine for lung nodule detection from CT images implemented by Artificial Neural Networks. The proposed Computer Aided Detection (CAD) technique encompasses several desirable properties such as mimicking physicians by means of geometric multi-perspective analysis, computational efficiency, and most importantly archiving high performance in detect...

متن کامل

Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule.

The aim of this study was to investigate the clinical application effects of a novel computer-aided detection (CAD) system based on three-dimensional computed tomography (CT) images on pulmonary nodule. 98 cases with pulmonary nodule (PN) in our hospital from Jun, 2009 to Jun, 2013 were analysed in this study. All cases underwent PN detection both by the simple spiral CT scan and by the compute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 38 10  شماره 

صفحات  -

تاریخ انتشار 2011